探索濾筒除塵器氣流分布的影響
濾筒除塵器,脈沖濾筒除塵價格,焊接車間粉塵治理濾筒除塵器是在布袋除塵器的基礎上,將濾袋升級為濾筒,以期實現(xiàn)提高過濾效率及增加過濾風量的新一代除塵產品;與布袋除塵器相比,不僅在過濾風量和過濾效率方面得到了巨大的提高,同時濾筒除塵器具有低壓運行、低阻損等顯著優(yōu)點。
1.1 濾筒除塵器工作原理
濾筒除塵器的過濾方式為表層過濾,含塵氣體由進風口進入除塵器后,由于空間的擴大及導流板的氣流分布作用,氣流流速變緩,含塵氣流中顆粒粗大的粉塵在重力和慣性力作用下落入灰斗;而微細粉塵隨氣流進入除塵室,由于布朗效應以及濾筒的篩分作用,終使粉塵沉積在濾料表面上,當濾筒兩側壓差達到設定值后脈沖清灰裝置動作進行清灰,使粉塵落入灰斗;凈化后的氣體進入凈氣室由排氣管匯集到出氣口經(jīng)風機排出,落入灰斗的粉塵經(jīng)卸灰閥排出除塵器。
1.2 進出口位置對氣流的影響
據(jù)相關資料介紹,影響除塵器除塵效率關鍵因素是粉塵性質、濾筒材質、過濾風速和除塵室的氣流上升速度等因素有關。其次,還與清灰方法及清灰能力有關。
對于粉塵性質、濾筒特性、和風速的研究較多,而對氣流的上升的研究較少。含沉氣流的上升速度及流場主要受進風口位置和出風口位置影響大。
根據(jù)有關資料對側下進風、下進風、側中進風、側上進風等不同進風方式的分析,得出側中進風方式是較優(yōu)進風方式。氣流在灰斗和塵氣室內沒有形成渦流,流場較為均勻。
因此,在下文的模擬中采用側中進風的進氣方式。本文為探索不同出口方式對濾筒除塵器氣流分布均勻性的影響,采用進出口夾角為0°、90°和180°3種出口形式進行模擬分析。
1.3 滲透率
滲透率K是描述多孔介質性質的一個關鍵參數(shù),表征在外加壓力梯度的作用下一種流體通過多孔介質的容易程度。
本例中含塵氣流在除塵器內部的流動可看作恒定不可壓縮流動,濾筒可看作有限厚度的薄膜,通過它的壓力變化定義為達西定律和附加內部損失項的結合:
1.4 濾筒流量分配系數(shù)
濾筒的流量分配系數(shù)是指每個濾筒實際處理氣體流量與平均處理氣體流量的比值,該參數(shù)可有效反應單個濾筒的實際過濾情況,記作Kqi,其公式表示為:
該系數(shù)越小,說明流量分布越均勻,對濾筒除塵器整體設計越好。
2、建模
濾筒除塵器內部結構較為復雜,若不對其進行簡化處理,那么除塵器流場的分析將會非常復雜,以至于計算機無法完成計算,因此,需要對除塵器的內部結構做適當簡化,假設如下:
(1)濾筒除塵器主要處理粉塵對象為炭黑等輕質干燥粉塵,因此,可將輕質粉塵和氣體的混合物看作是一種均勻介質,在進行數(shù)值模擬時,將該氣固兩相流近似簡化成具有平均流體特性的單相流處理。
(2)濾筒除塵器在實際運行過程中,濾筒表面的粉塵量是不斷變化的,而在此不進行動態(tài)分析,僅做些靜態(tài)模擬,即在粉塵層厚度_的情況下做壓強、速度及流量分配等的分析。
(3)濾筒結構較為復雜,褶數(shù)較多,對于數(shù)值分析的建模及計算不利,因此,將濾筒除塵器簡化為圓柱狀,其他相關設置參數(shù)做進一步相似_改。
根據(jù)模型簡化的規(guī)則,去除脈沖噴吹部分、連接部分以及清灰部分等,在SOLIDWORKS中創(chuàng)建的三維模型。
根據(jù)某公司的除塵器模型,除塵器的進口尺寸為500mm×500mm,出口尺寸為200mm×1000mm,3種建模出口方位與進口方位的夾角分別0°、90°為和180°。
將SOLIDWORKS中創(chuàng)建的三維模型導入Gambit進行有限元網(wǎng)格劃分,在Gambit中采用非結構化網(wǎng)格劃分技術進行網(wǎng)格劃分。
網(wǎng)格劃分完成后導入SOLIDWORKS軟件中,依次點擊Mech→Polydedra→Convert Domain,經(jīng)過短暫的時間轉化后,將四面體非結構化網(wǎng)格轉化為多面體網(wǎng)格,提高計算效率。
除塵器規(guī)格為濾筒個數(shù)6排8列,共48個,濾筒規(guī)格為150mm×1500mm,過濾總風量為6900m3/h,即濾筒過濾風速約為0.8mm/min,本模擬中濾筒采用的是非覆膜式,采用的濾筒滲透率α為1×10-5m2。
為較好的分析濾筒間氣流分布情況,方便下文敘述,現(xiàn)對濾筒進行編號,靠近進氣口的為弟一列,示意圖見圖2。
3、模擬結果分析
綜合3種出口位置模型模擬數(shù)據(jù),繪制3種出口位置下的綜合流量分配系數(shù)如下圖3所示。綜合流量分配系數(shù)反映了3種出口位置的除塵器的流量分配情況。從圖3可以看出,進出口夾角為90°和夾角為180°的除塵器模型的流量分配均勻性均較好,而進出口夾角為0°的除塵器模型氣流分配均勻性較差。
將3種出口形式的濾筒總過濾風量進行統(tǒng)計,進出口夾角為0°的除塵器的過濾風量的質量流量為2.349 kg/s1進出口夾角為90°的除塵器為2.350 kg/s1進出口夾角為180°的除塵器為2.346 kg/s,3種出口形式的濾筒總過濾風量差值較大為0.004 kg/s,小于總過濾風量的1%,因此,可以將3種出口形式下的氣流分布進行對比。
對3種出口形式的濾筒除塵器不同排和不同列濾筒過濾風量進行統(tǒng)計(1~8號濾筒為第1排,9~18號濾筒為第2排,以此類推,直到41~48號濾筒為第六排。1、9、17、25、33和41號濾筒為第1列,2、10、18、26、34和42號濾筒為第2列,以此類推,直到8、16、24、32、40和48號濾筒為第8列,繪制表格見表1和表2。
對3種出口形式的濾筒除塵器不同排和不同列濾筒過濾風量進行統(tǒng)計(1~8號濾筒為第1排,9~18號濾筒為第2排,以此類推,直到41~48號濾筒為第六排。1、9、17、25、33和41號濾筒為第1列,2、10、18、26、34和42號濾筒為第2列,以此類推,直到8、16、24、32、40和48號濾筒為第8列,繪制表格見表1和表2。
根據(jù)上述表格,繪制不同排濾筒過濾風量圖及不同列濾筒過濾風量圖。
不同排和不同列濾筒過濾風量圖顯示了整個除塵器的過濾情況,從以上分析數(shù)據(jù)可以看出,不論何種出口位置,整個除塵器中心部分的濾筒過濾風量均有所降低,即靠近除塵器側壁的除塵器的過濾風量較高。
再來觀察不同排濾筒過濾風量統(tǒng)計圖,重點分析第6排濾筒的過濾風量,從圖中可以明顯看出,進出口夾角為90°的濾筒除塵器的第6排濾筒過濾風量較高。
再來觀察不同列濾筒過濾風量統(tǒng)計圖,重點分析第1列和第8列濾筒的過濾風量,進出口夾角為0°的除塵器的第1列濾筒過濾風量較高,進出口夾角為180°的除塵器的第8列濾筒過濾風量明顯高于進出口夾角為0°的除塵器,略高于進出口夾角為90°的除塵器。
綜合模擬結果可以得出結論,進出口夾角為180°時氣流分布均勻。
流場在相同的總過濾風量下,出口位置會導致與之鄰近的濾筒的過濾風量的提高,進出口夾角為180°時氣流分布均勻
探索不同進出口夾角對濾筒除塵器氣流分布均勻性的影響,采用進出口夾角為0°、90°和180°3種出口形式進行模擬分析,分別從不同排和不同列的濾筒過濾風量和綜合流量分配系數(shù)的角度對比得出:出口位置會致與之鄰近的濾筒的過濾風量的提高。
。